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The problem of thermoacoustic heating at  the closed end of a tube, in which small 
gas oscillations are maintained, leads in the case of adiabatic walls, and within the 
framework of a linear theory of the oscillations and a second-order theory of the 
heating effect, to singular behaviour of the equilibrium temperature at the tube end. 
Two cases are discussed : one with vanishing viscosity and one with viscosity tending 
to infinity. The singularities turn out to be similar in character and integrable in both 
cases. 

1. Introduction 
Heating effects at the closed end of oscillating gas columns can be spectacular, as 

in the case of the Hartmann-Sprenger (HS) tube (Sprenger 1954). In  its original form, 
the HS-tube is driven by a supersonic jet; considering the complicated combination 
of flow and heat-conduction effects that occur, it  is not surprising that the theoretical 
approach to the problem proves to be very difficult. HS-tubes driven by high subsonic 
and low supersonic Mach number jets were successfully constructed by Brocher ; these 
proved to be accessible to a fluid mechanical analysis (Brocher & Maresca 1969; 
Brocher, Maresca & Bournay 1970), and later to a theory of the heating effects 
(Brocher & Maresca 1973; Brocher 1977). The main phenomena to be considered for 
the thermal theory are shock heating, viscous dissipation, and the mass and energy 
exchange between the penetrating jet and the gas in the tube. 

A further step towards simplifying the problem was taken by.Merkli & Thomann 
(1975), who considered small-amplitude acoustic oscillations in a tube, adequately 
described by linear theory. The heating effect is then of second order, and the 
‘ thermoacoustic streaming ’ is described by a quadratic theory based on the linear 
solution, in analogy to Rayleigh’s theory for the acoustic streaming of mass. Merkli 
& Thomann found experimentally - and in excellent agreement with theory - a 
thermoacoustic heating effect at the closed ends, and cooling at the antinode. 

Merkli & Thomann considered an isothermal wall, but (depending on wall 
conductivity) the thermoacoustic heating causes an axial temperature stratification 
along the tube wall and in the gas. This fact, together with the investigation of 
thermoacoustic oscillations driven by externally imposed axial temperature gradients, 
have led the author (Rott 1975) to a theory of thermoacoustic streaming which 
includes theeffect of an axial temperature gradient. A common mean axial temperature 
stratification is assumed for the gas (at rest) and the wall; once this is given, the 
second-order heat exchange between the gas and the wall can be calculated from the 
acoustic solution. The essential effect is the transverse temperature gradient caused 
by the displacement of the stratified gas relative to the wall. For small displacements, 

t Present address : Department of Aeronautics and Astronautics, Stanford University, Stanford, 
CA 94305, U.S.A. 
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a linear theory and a subsequent second-order calculation are appropriate. Clearly 
such an approach is not applicable for large displacements like those in an HS-tube. 

Even for small oscillations, however, the problem of the closed end becomes rather 
complicated in the case in which a finite section at the end is assumed to be completely 
heat-insulated, i.e. adiabatic. This notion is widely used, but actually needs some 
explanations. When oscillations start from rest, heat is exchanged between the gas 
and the wall. This leads ultimately to the build-up of a steady-state mean temperature 
distribution Tm(x) varying along the tube axis. Such a distribution is only defined 
when the properties of sources and sinks along the tube are specified. In particular, 
the temperature distribution in a heat-insulated section is defined by the condition 
that after the build-up phase, in the steady state, no heat is exchanged between the 
gas and the wall, a condition that leads to the determination of the common 
temperature stratification Tm(x) of the gas and the wall. To consider this condition 
fulfilled for a section of a tube is tantamount to neglecting the axial steady Fourier 
heat conduction both in the gas and the wall. For the gas, thermoacoustic streaming 
in the presence of an axial temperature gradient is found to carry heat much more 
effectively than the Fourier conduction caused by the same gradient, a fact well 
known experimentally and confirmed theoretically (Rott 1975). The wall is assumed 
to have low conductivity, a condition that can be .realized by proper design of the 
tube (e.g. as a stack of short well-insulated sections). 

It will be shown that in the case in which a section adjacent to the closed end of 
a thermoacoustic oscillator is completely heat-insulated, the temperature distribution 
T,(x) must have a singularity (i.e. infinity) at the closed end. This result is obtained 
in the framework of the theory of thermoacoustic streaming based on small 
oscillations and all the attendant simplifying assumptions. 

By way of introduction, a qualitative description of the build-up is given that leads 
to this singular behaviour. From the work of Merkli & Thomann (1975) it  is known 
that a closed end of an isothermal tube filled with oscillating gas is always heated, 
i.e. heat flows from the gas to the wall.? The flux per unit tube length is proportional 
to the product of the acoustic pressure and velocity. Now suppose that the heat sink 
at  the end section of the tube that maintains the isothermal state becomes saturated, 
so that the temperature rises in that section, both in the gas and the wall, thus 
approaching adiabatic conditions. Then the attendant heat flux into the gas is 
proportional to the temperature gradient in the gas and to the square of the acoustic 
velocity (Rott 1975). At the closed end, the acoustic velocity is zero and both types 
of flux vanish; however, the second kind vanishes with the square of the velocity and 
thus cannot compensate for the flux of the first kind in the vicinity of the closed end 
unless the temperature gradient becomes very large. The ultimate steady-state 
singularity is obtained by setting the total resultant heat flux equal to zero. 

Calculations following this outline are presented later ; first, however, a different 
way to the determination of the singularity is discussed, which is applicable in 
important special cases. It is based on an ingenious ‘heuristic argument’ set forth 
by Gifford & Longsworth (1966) in connexion with the explanation of their ‘ pulse-tube ’ 
effect. These considerations precede the experiments and theory by Merkli & 
Thomann (1975) and the theory of Rott (1975), but apparently no attempts were 
made to connect the two ideas, until in the work of Wheatley et al. (1983) notice was 
taken of both approaches. The analysis shown later is based on a suggestion by 
Wheatley (private communication). 

To understand the idea of Gifford & Longsworth, one has to recall that the heat 

t An explicit solution for isothermal walls in the limit of infinite viscosity but finite Prandtl 
number was given by Thomann (1976). 
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FIGURE 1. Heat-insulated end of a tube with a mean temperature distribution T,(z), in which gas 
oscillates (displacement 8 )  : -, equilibrium distribution; ---- , shifted distribution. 

exchange between gas and wall due to oscillations is the consequence of the transverse 
temperature gradient caused by the displacement of the gas from the equilibrium 
position in which gas and wall have a common temperature stratification (figure 1).  
This, however, is not the only effect on the gas temperature to be considered: the 
displacement fluctuations in the gas are accompanied by temperature oscillations. 
In  the core of the gas column not affected by friction and heat conduction, the 
connexion is isentropic. Near the closed end the effect of inertia is negligible, and the 
relation between the acoustic pressure pa and the displacement s is given by the 
quasi-steady adiabatic relation between volume and pressure. This assumption is 
valid near the closed end over a tube section for which pa can be taken as independent 
of x. The relation (pm +pa) V y  = const (where pm is the mean pressure, uniform over 
the whole tube length) is independent of the gas temperature in the volume V and 
is even valid - as shown by a moment’s consideration - for a temperature distribution 
Tm(x) in V.  Thus the following linearized relation holds (with a constant cross-section 
over the length considered) : s 

(1 .1)  
_ -  P a  
P m  - -y,. 

But as 

this means that 

Now if 

the temperature oscillations exactly cancel the effect of the displacement of the 
stratified gas, and there is no transverse temperature gradient ; (1.3) and (1.4) give 

(1.5) dlog Tm - (y- l ) ,  
d log x 

or 
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showing the singularity of T,(z). From (1.2) i t  is seen that T, is also singular, while 
pa remains finite. 

The fact that viscous boundary layers will modify this simple result was already 
anticipated by Gifford & Longsworth. In  their paper, Wheatley et al. (1983) consider 
the ‘heuristic argument ’ to be valid only for zero viscosity (vanishing Prandtl number 
a). Even in this case, i t  does not appear to be obvious that the result (1.6) is 
independent of the thickness of the thermal boundary layer. However, following 
Wheatley (private communication), this fact can be proved ; moreover, the solution 
(1.6) can be extended for a full tube length to a solution that is exact, albeit for a 
singular temperature distribution. 

A different type of limiting process, presented by Muller (1982) in his dissertation, 
has led to another group of singular solutions. Muller argues that whenever one 
considers the limit T,+oo, it  is only consistent to assume that the viscosity and heat 
conduction of the gas also tend to infinity. According to kinetic theory, the viscosity 
,u of simple gases can be well represented (piecewise) by a power law ,u - T& with 
/3 > 0.5. Thus Muller assumes that a t  the closed end, dissipative effects dominate in 

. the gas over the whole cross-section. Once this assumption is made, the value of /3 
does not enter the results any further. What is more surprising is the fact that the 
Prandtl number drops out from Muller’s formulas in the limiting analysis. As his result 
includes the case of zero Prandtl number, and the Gifford-Longsworth distribution 
is valid for any thickness of the thermal boundary layer, there is an apparent overlap 
in the regions of validity for the two theories. However, the Gifford-Longsworth 
result holds for ,u = 0, and Muller’s for ,u +OO, with arbitrary thermal conductivity 
in both cases. In  the first case the Prandtl number a must be zero from the beginning ; 
in the second, a is arbitrary. The subsequent analysis shows that the order of steps 
by which the limit a = 0 is reached is essential. Nevertheless, the difference in the 
results given by two theories is not overwhelming; Muller (1982) finds that 

where j = 0 for two-dimensional ducts a n d j  = 1 for round tubes. 
The consequence to be drawn is that, once the singular behaviour a t  the closed end 

is admitted, the ‘heuristic argument’ is a strong one, and the investigation of its 
relation to thermoacoustic theory is justifiable. 

2. Basic equations 
Thermoacoustic oscillations of a gas column with axial temperature stratification 

are calculated under the simplifying assumption that the acoustic pressure pa = peiwt 
is constant in a cross-section, i.e. it  depends only on the axial coordinate x. The 
acoustic velocity and temperature distributions are determined, however, with 
friction and heat conduction fully included in the radial direction, and neglected in 
the axial direction. Dynamically, the simplifications are the same as in boundary layer 
theory, but the dissipative layer does not have to be thin compared with the tube 
(or channel) radius. 

Under these conditions, it has been found (Rott 1969) that p satisfies the equation 
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where a is the speed of sound and 0 = d log a2/dx = d log T,/dx; j, is a complex 
function of the variable 

iw t 
7, = rw(;-> , (2.2) 

which in turn depends, through the kinematic viscosity, on the mean temperature 
T,; with p N TL (say) and pm N 1/T, (asp, = const) one has 

v N Tl&+p, yw - T$1+8). (2.3) 

The functions f, have been found to be given by 

1 

7, 
fa = - tanh 7, (2.4) 

for channels (j = 0) with half-width r,, and by 

for round tubes ( j  = 1) with radius r,. Finally, 

f i * ( r w )  = f i ( 7 w  (2.6) 

where u is the Prandtl number. 
Next, the quantity of main interest is the heat exchanged between wall and gas. 

Let q be the time-averaged heat flow per unit time and area (positive when directed 
into the wall). Then, from the energy equation of the gas it follows (Merkli & Thomann 
1975; Rott 1975) that 

Here the index 1 
dependent (real) 

for the first order quantities u, T ,  etc. indicates that the 
quantities are meant, and have to be time-averaged. 

corresponding quantities without index 1 are complex amplitudes.) 
The quantity Ecould be called the axial heat-flux, as its rate of change with x gives 

q. However, when a flexible piston is introduced at a position x, it  extracts from the 
oscillation the power (positive for a piston driven from the left) 

and there is a remainder of the average axial heat flux, to be called Q, so that 

IT= P + Q ,  (2.10) 

which gives 
s1 u1(nr)5 dr, R 

(2.11) 

where s1 is the entropy. What actually happens at a piston lies, in its details, outside 
the scope of the present theory. This could only be discussed (albeit with the use 
of considerable effort) with the help of the theory of Monkewitz (1979), which applies 
even in the case of strong axial changes. However, here the position is taken 
(supported by the investigations of Monkewitz) that the theory based on (2.1) is 
adequate up to the piston, in particular for the calculation of the power 8. Whether 
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the heat Q is conducted through the piston or (by a modified field) in the tube near 
the piston cannot be decided in general, and for a particular model one would have 
to resort to the theory of Monkewitz. 

The upshot of this discussion is that it is evidently more appropriate (following 
Wheatley et al. 1983) to call the quantity E t h e  ‘enthalpy flux’ or ‘total energy flux’, 
instead of ‘heat flux’, which could be misleading at a piston. 

It remains to determine E, based on the known distributions of u and T (Rott 1969). 
The result is (Rott 1975) 

ue ~ e ]  gj} 3 

i t?p,a2 

where the tilde indicates the complex conjugate; the quantity 

i dp 
U e = - -  

WPm dx 

(2.12) 

(2.13) 

represents a measure of the acoustic velocity, and is equal to the external velocity 
for thin boundary layers; and the function gj is given by 

n 1 
gj = 1--f --J;. 

l + a  ’ l + a  
(2.14) 

At a closed end u, = 0 and R = 0. Naturally, heat could be transferred through the 
endwall, but only by axial conduction, and it would be inconsistent to take this into 
consideration. 

3. The Gifford-Longsworth solution 

(2.1), while with a = 0 the value off; remains finite: 
In  the case when friction is neglected from the beginning, one has to set f, = 0 in 

v w d = r w (  iwp, c y, 
where k is the heat conductivity. Equation (2.1) simplifies to 

Following Wheatley (personal communication) we notice that if the sum of the terms 
multiplying f? vanishes, i.e. if 

1 da2dp 
w2 dx dx (y-  1)p---- = 0, (3.2) 

then the inner bracket in (2.12) (with u, inserted from (2.13)) also vanishes for a = 0, 
so that .Fi = 0 everywhere ; simultaneously, one has to fulfill the equation 

p+d(E*)=o 
dx w2dx ’ (3-3) 

which is the acoustic equation without friction and heat conduction. 

of a2 - Tm for which a = 0. Eliminating p from (3.2) and (3.3), one finds 
The two equations (3.2) and (3.3) determine bothp and that particular distribution 

da2 dp d2P + ( y - l ) d -  = 0 Ydx:dx dx2 ’ (3.4) 
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which can be integrated to give 

the equations (3.2)-(3.6) can be brought into the form 

where p ,  is the pressure a t  the closed end, and c, is to be determined by proper 
normalization. Elimination of p between (3.7) and (3.8) leads to 

d2z 
-+zy = 0. 
df12 

Multiplication by dz/d[ and integration gives 

(3.9) 

(3.10) 

whereby c,  has been fixed for later convenience. 
Further evaluation of z and p as functions of 6 is straightforward and leads to an 

exact solution. Its most important properties can be determined from the results thus 
far, considering the boundary conditions. At the closed end we have 

(3.11) 

Suppose the value of 6 = 6, for which dz/d6 vanishes has been found from integration 
of (3.10) ; this is the open end 

dz _ -  - 0, z = 1 ( 6 =  to). 
dE 

(3.12) 

Comparison with (3.6) identifies the value of a,: it is the speed of sound a t  the open 
end, where z = 1 .  Near to the closed end one has z = c o t ,  or 

(3.13) 

This is the Gifford-Longsworth distribution. Here, in addition, the normalization of 
the singularity at the closed end has been connected to the (given) values at the open 
end. 

The solution has to be visualized as an isentropic oscillation in a tube open at one 
end, with viscosity neglected, and the effects of a possible heat conduction nullified 
by the avoidance of any transverse temperature gradient which could be created by 
the axial displacement of the gas. 

In the case in which the usual thermal boundary condition at the tube wall, which 
holds for infinite heat capacity of the tube, is replaced by a more general condition, 
(2.1) has to be replaced by a more complicated equation (Rott 1980). This leads to 
a change in (3.1) which causes the appearance of a factor multiplying f: wherever 
it occurs. Thus the results of this section remain unaffected. 
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In 'reality ') when the temperature at the closed end remains finite, heat-conduction 
losses at the closed end are unavoidable even at zero viscosity, and the 'open end' 
has to be replaced by a driving piston. 

It also has to be noted that in the case in which g =  0 at a point (or a region) of 
a thermoacoustic oscillator, one cannot conclude that (3.2) hold there. = 0 does 
not imply that a factor (in this case the square bracket in (2.12)) must be zero: the 
real part of the expression which gives fl can vanish by a very different balance, as 
illustrated by the next example. 

4. Miiller's solution 
= 0 is valid for highly 

viscous flow in the limit T,,,+oo, v+m, lqwl 4 1. As a first step for the solution, an 
expansion ofh, given by (2.4) and (2.5), is obtained in this limit. It is possible to join 
these expansions for j = 0 and j = 1 into one series by use of j as a parameter in the 
coefficients : 

The solution given by Muller (1982) for a closed end with 

qf+ .... (4.1) 
1 2 4 17 + 5j 

fj = l-- 3+5j"+(3+5j)(5+7j)qw-(3+5j)2(5+7j)(7+j) 

The detailed analysis has shown that for the solution of (2.1) only the first two terms 
of (4.1) are needed; in this approximation one has 

l-f? x u(1-fj). (4.2) 

By use of this relation the basic equation (2.1) is reduced to 

Actually, near to the closed end it suffices to replace the first term in (4.3) by yp,, 
and one obtains 

or, by use of u, defined by (2.13) and with (4.1), 

It is interesting to note that (4.4) shows p ,  and u, in phase, in contrast with the 
exactly out-of-phase relation in $2 (see (2.13)). The balance R= 0 is now produced, 
as already noted previously, in a quite different way ; with the notation gj = gjre + igjim, 
(2.12) can now be rewritten as follows: 

Now fj is introduced in (2.14) to determine the leading term of the real and imaginary 
parts of 9,. The result is 

2u r$w2 
v 2  ' gjre = (3+5j) (5+7j) 

&EL=- u(17+5j) rf w8 
l -u  (3+5j)2(5+7j)(7+j) v3 * 

(4.7) 
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The condition a = 0 reduces, by use of (4.4)-(4.7), to the condition 

Let T, be proportional to x-", so that 

n 0 = dx x 
TmJE=- n+1' X 

When this is inserted in (4.8), the exponent n is obtained in agreement with (1.7). 
The surprising similarity of the singularities obtained here and in $ 3  has already 

been noted in $1. An important limitation to the usefulness of all singular solutions 
is, however, the fact that  even a very weak - but unavoidable - axial conduction in 
the solid wall profoundly modifies the solutions; this will be the subject of future 
investigations. Nevertheless, as the singularities are integrable, it is possible to obtain 
an estimate (probably an upper bound) of the total amount of heat that can be stored 
in the gas near the end of a heat-insulated tube. 
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